prime1(0) -> false
prime1(s1(0)) -> false
prime1(s1(s1(x))) -> prime12(s1(s1(x)), s1(x))
prime12(x, 0) -> false
prime12(x, s1(0)) -> true
prime12(x, s1(s1(y))) -> and2(not1(divp2(s1(s1(y)), x)), prime12(x, s1(y)))
divp2(x, y) -> =2(rem2(x, y), 0)
↳ QTRS
↳ DependencyPairsProof
prime1(0) -> false
prime1(s1(0)) -> false
prime1(s1(s1(x))) -> prime12(s1(s1(x)), s1(x))
prime12(x, 0) -> false
prime12(x, s1(0)) -> true
prime12(x, s1(s1(y))) -> and2(not1(divp2(s1(s1(y)), x)), prime12(x, s1(y)))
divp2(x, y) -> =2(rem2(x, y), 0)
PRIME1(s1(s1(x))) -> PRIME12(s1(s1(x)), s1(x))
PRIME12(x, s1(s1(y))) -> DIVP2(s1(s1(y)), x)
PRIME12(x, s1(s1(y))) -> PRIME12(x, s1(y))
prime1(0) -> false
prime1(s1(0)) -> false
prime1(s1(s1(x))) -> prime12(s1(s1(x)), s1(x))
prime12(x, 0) -> false
prime12(x, s1(0)) -> true
prime12(x, s1(s1(y))) -> and2(not1(divp2(s1(s1(y)), x)), prime12(x, s1(y)))
divp2(x, y) -> =2(rem2(x, y), 0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
PRIME1(s1(s1(x))) -> PRIME12(s1(s1(x)), s1(x))
PRIME12(x, s1(s1(y))) -> DIVP2(s1(s1(y)), x)
PRIME12(x, s1(s1(y))) -> PRIME12(x, s1(y))
prime1(0) -> false
prime1(s1(0)) -> false
prime1(s1(s1(x))) -> prime12(s1(s1(x)), s1(x))
prime12(x, 0) -> false
prime12(x, s1(0)) -> true
prime12(x, s1(s1(y))) -> and2(not1(divp2(s1(s1(y)), x)), prime12(x, s1(y)))
divp2(x, y) -> =2(rem2(x, y), 0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
PRIME12(x, s1(s1(y))) -> PRIME12(x, s1(y))
prime1(0) -> false
prime1(s1(0)) -> false
prime1(s1(s1(x))) -> prime12(s1(s1(x)), s1(x))
prime12(x, 0) -> false
prime12(x, s1(0)) -> true
prime12(x, s1(s1(y))) -> and2(not1(divp2(s1(s1(y)), x)), prime12(x, s1(y)))
divp2(x, y) -> =2(rem2(x, y), 0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PRIME12(x, s1(s1(y))) -> PRIME12(x, s1(y))
POL(PRIME12(x1, x2)) = 2·x2
POL(s1(x1)) = 2 + 2·x12
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
prime1(0) -> false
prime1(s1(0)) -> false
prime1(s1(s1(x))) -> prime12(s1(s1(x)), s1(x))
prime12(x, 0) -> false
prime12(x, s1(0)) -> true
prime12(x, s1(s1(y))) -> and2(not1(divp2(s1(s1(y)), x)), prime12(x, s1(y)))
divp2(x, y) -> =2(rem2(x, y), 0)